Mesomorphic Lamella Rolling of Au in Vacuum

نویسندگان

  • Chang-Ning Huang
  • Shuei-Yuan Chen
  • Pouyan Shen
چکیده

Lamellar nanocondensates in partial epitaxy with larger-sized multiply twinned particles (MTPs) or alternatively in the form of multiple-walled tubes (MWTs) having nothing to do with MTP were produced by the very energetic pulse laser ablation of Au target in vacuum under specified power density and pulses. Transmission electron microscopic observations revealed (111)-motif diffraction and low-angle scattering. They correspond to layer interspacing (0.241-0.192 nm) and the nearest neighbor distance (ca. 0.74-0.55 nm) of atom clusters within the layer, respectively, for the lamella, which shows interspacing contraction with decreasing particle size under the influence of surface stress and rolls up upon electron irradiation. The uncapped MWT has nearly concentric amorphous layers interspaced by 0.458-0.335 nm depending on dislocation distribution and becomes spherical onions for surface-area reduction upon electron dosage. Analogous to graphene-derived tubular materials, the lamella-derived MWT of Au could have pentagon-hexagon pair at its zig-zag junction and useful optoelectronic properties worthy of exploration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In situ heating transmission electron microscopy observation of nanoeutectic lamellar structure in Sn-Ag-Cu alloy on Au under-bump metallization.

We investigated the microstructural evolution of Sn(96.4)Ag(2.8)Cu(0.8) solder through in situ heating transmission electron microscopy observations. As-soldered bump consisted of seven layers, containing the nanoeutectic lamella structure of AuSn and Au₅Sn phases, and the polygonal grains of AuSn₂ and AuSn₄, on Au-plated Cu bond pads. Here, we found that there are two nanoeutectic lamellar lay...

متن کامل

Longitudinal Magneto-Optical Kerr Effect in Ce:YIG Thin Films Incorporating Gold Nanoparticles

We report an experimental study on optical and magneto-optical properties of Cesubstituted yttrium iron garnet thin films incorporating gold nanoparticles. Au nanoparticles were formed by heating Au thin film on cubic quartz and garnet substrate in vacuum chamber and a Ce:YIG layer was deposited on them by the aid of Pulsed laser deposition method. A large enhancement of the longitudinal Kerr e...

متن کامل

Macroscopic CNT fibres inducing non-epitaxial nucleation and orientation of semicrystalline polymers

In the presence of macroscopic fibres of carbon nanotubes (CNT), various semicrystalline polymers are shown to present accelerated crystallisation through the formation of a transcrystalline (TC) layer perpendicular to the fibre axis. From differential scanning calorimetry, polarized optical microscopy and X-ray diffraction we establish this to be due to much faster nucleation rates at the fibr...

متن کامل

Rolling to the tachyon vacuum in string field theory

We argue that the rolling-tachyon solution in cubic OSFT proceeds at late times to precisely the analytic tachyon-vacuum solution constructed by Schnabl. In addition, we demonstrate the relationship between the rolling-tachyon solution and the standard BCFT description by showing that there is a finite gauge transformation which relates the two.

متن کامل

Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility.

Grain refinement can make conventional metals several times stronger, but this comes at dramatic loss of ductility. Here we report a heterogeneous lamella structure in Ti produced by asymmetric rolling and partial recrystallization that can produce an unprecedented property combination: as strong as ultrafine-grained metal and at the same time as ductile as conventional coarse-grained metal. It...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009